Breast Cancer Diagnosis using Machine Learning Approach

Author:

Caleb Nanchen Nimyel1,Zwalnan Selfa Johnson1,Pahalson Cornelius A.2

Affiliation:

1. School of Engineering, Plateau State Polytechnic, Barkin Ladi, Nigeria

2. School of Science and Technology, Plateau State Polytechnic, Barkin Ladi, Nigeria

Abstract

Breast cancer is the second most common cancer in women after skin cancer. When cancer care is delayed or inaccessible, there is a lower chance of survival, greater problems associated with treatment and higher costs of care. Early diagnosis improves cancer outcomes and leads to a better prognosis. In third world countries like Nigeria, where state-of-the art breast cancer diagnostic machines and the experts are grossly insufficient, alternative approaches to early diagnosis of breast cancer must be evolved. These preliminary data obtained from images of suspected cases of breast cancer are transformed in profiles of breast diseases, which are used by the local physicians in charge of breast disease patients. Each new case can then be compared by the local treating physician with the profile of all preceded cases with the same diagnosis. Three supervised learning models; Logistic Regression. Random Forest Classifier, and K-Nearest Neighbors were used to train the cancer dataset, and Random Forest Classifier outperformed with accuracy of 96% and an almost perfect sensitivity/Recall index. The dataset could not capture the demographic effects of the breast cancer images on the diagnosis, which now opens up new research areas in this study of breast cancer.

Publisher

Naksh Solutions

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3