Video Summarization using Object Detection Method

Author:

Tanish Jain 1,Mir Quadeer Ali 1,Shubham Soni K 1,Surya Tarun 1

Affiliation:

1. Ballari Institute of Technology and Management, Ballari, Karnataka, India

Abstract

Video summarization is a fundamental challenge in the field of computer vision and multimedia processing, aimed at condensing lengthy videos into concise representations without compromising the essential content and context. This project focuses on the integration of object detection techniques into the process of video summarization, harnessing the power of deep learning to automatically identify and extract key objects and events from video sequences. By leveraging state-of-the-art object detection models and innovative summarization algorithms, this project aims to enhance the efficiency and effectiveness of video summarization, enabling users to quickly grasp the content and significance of videos without the need for exhaustive playback. The proposed approach not only streamlines video browsing and content comprehension but also holds potential applications in various domains, including surveillance, video indexing, and content recommendation systems

Publisher

Naksh Solutions

Reference14 articles.

1. [1] Smith, A., Johnson, B. (2022). "Object-Aware Video Summarization Using Deep Object Detection." Journal of Computer Vision and Multimedia Processing, 12(3), 123-138.

2. [2] Chen, X., Wang, Y. (2018). "YOLO-Based Video Summarization: Fast Object Detection for Efficient Summaries." International Conference on Multimedia Retrieval, 45-52.

3. [3] Liu, Z., Zhang, C. (2019). "Enhancing Video Summarization with Temporal Object Consistency." IEEE Transactions on Multimedia, 21(6), 1509-1522.

4. [4] Patel, K., Lee, M. (2021). "Object-Centric Video Summarization Using Multi-Modal Fusion." ACM Transactions on Multimedia Computing, Communications, and Applications, 7(4), 78-92.

5. [5] Gupta, R., Kumar, S. (2017). "Efficient Video Summarization via Object Tracking and Detection." IEEE International Conference on Computer Vision, 234-241.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3