Finite-size scaling of the majority-voter model above the upper critical dimension

Author:

Chatelain C.ORCID

Abstract

The majority-voter model is studied by Monte Carlo simulations on hypercubic lattices of dimension d = 2 to 7 with periodic boundary conditions. The critical exponents associated to the finite-size scaling of the magnetic susceptibility are shown to be compatible with those of the Ising model. At dimension d = 4, the numerical data are compatible with the presence of multiplicative logarithmic corrections. For d ≥ 5, the estimates of the exponents are close to the prediction d/2 when taking into account the dangerous irrelevant variable at the Gaussian fixed point. Moreover, the universal values of the Binder cumulant are also compatible with those of the Ising model. This indicates that the upper critical dimension of the majority-voter model is not dc = 6 as claimed in the literature, but dc = 4 like the equilibrium Ising model.

Publisher

Institute for Condensed Matter Physics

Subject

Physics and Astronomy (miscellaneous),Condensed Matter Physics

Reference27 articles.

1. 3. Binney J. J., Dowrick N. J., Fisher A. J., Newman M. E. J., The Theory of Critical Phenomena, Oxford University Press, 1972.

2. 4. Amit D. J., Martín-MayorV., Field Theory, theRenormalization Group and Critical Phenomena,World Scientific, Singapore, 2005.

3. Renormalization Group: Applications in Statistical Physics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3