Layered Lossless Compression Method of Massive Fault Recording Data

Author:

Di Jinhong1,Yang Pengkun1,Wang Chunyan1,Yan Lichao1

Affiliation:

1. School of Intelligent Engineering, Zhengzhou University of Aeronautics, Zhengzhou, 450046 China

Abstract

In order to overcome the problems of large error and low precision in traditional power fault record data compression, a new layered lossless compression method for massive fault record data is proposed in this paper. The algorithm applies LZW (Lempel Ziv Welch) algorithm, analyzes the LZW algorithm and existing problems, and improves the LZW algorithm. Use the index value of the dictionary to replace the input string sequence, and dynamically add unknown strings to the dictionary. The parallel search method is to divide the dictionary into several small dictionaries with different bit widths to realize the parallel search of the dictionary. According to the compression and decompression of LZW, the optimal compression effect of LZW algorithm hardware is obtained. The multi tree structure of the improved LZW algorithm is used to construct the dictionary, and the multi character parallel search method is used to query the dictionary. The multi character parallel search method is used to query the dictionary globally. At the same time, the dictionary size and update strategy of LZW algorithm are analyzed, and the optimization parameters are designed to construct and update the dictionary. Through the calculation of lossless dictionary compression, the hierarchical lossless compression of large-scale fault record data is completed. Select the optimal parameters, design the dictionary size and update strategy, and complete the lossless compression of recorded data. The experimental results show that compared with the traditional compression method, under this compression method, the mean square error percentage is effectively reduced, and the compression error and compression rate are eliminated, so as to ensure the integrity of fault record data, achieve the compression effect in a short time, and achieve the expected goal.

Publisher

North Atlantic University Union (NAUN)

Subject

Electrical and Electronic Engineering,Signal Processing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3