High CMRR Voltage Mode Instrumentation Amplifier Using a New CMOS Differential Difference Current Conveyor Realization

Author:

Ettaghzouti T.1,Hassen N.2

Affiliation:

1. Physic, microelectronics and electronics to Faculty of Arts and Sciences Al Qurayyat, Jouf University, Saudi Arabia

2. microelectronics and electronics to ISIMM University of Monastir, Tunisia

Abstract

This paper describes a new CMOS realization of differential difference current conveyor circuit. The proposed design offers enhanced characteristics compared to DDCC circuits previously exhibited in the literature. It is characterized by a wide dynamic range with good accuracy thanks to use of adaptive biasing circuit instead of a constant bias current source as well as a wide bandwidth (560 MHz) and a low parasitic resistance at terminal X about 6.86 Ω. A voltage mode instrumentation amplifier circuit (VMIA) composed of a DDCC circuit and two active grounded resistances is shown as application. The proposed VMIA circuit is intended for high frequency applications. This configuration offers significant improvement in accuracy as compared to the state of the art. It is characterized by a controllable gain, a large dynamic range with THD less than 0.27 %, a low noise density (22 nV/Hz1/2) with a power consumption about 0.492 mW and a wide bandwidth nearly 83 MHz. All proposed circuits are simulated by TSPICE using CMOS 0.18 μm TSMC technology with ± 0.8 V supply voltage to verify the theoretical results.

Publisher

North Atlantic University Union (NAUN)

Subject

Management, Monitoring, Policy and Law,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3