Single intranasal immunization with a high dose of influenza vector protects against infection with heterologous influenza virus and SARS-CoV-2 in ferrets and hamsters

Author:

Egorov AndrejORCID,Krokhin Artem A.ORCID,Leneva Irina A.ORCID,Korabliov Pavel,Loiteris Pavelas,Nebolsin Vladimir E.ORCID

Abstract

BACKGROUND: The challenge of vaccine effectiveness against viruses that undergo constant antigenic changes during evolution is currently being addressed by updating vaccine formulations to match circulating strains. However, this approach proves ineffective if a virus undergoes antigenic drift and shift, or if a new virus, such as SARS-CoV-2, emerges and enters circulation. Hence, there is a pressing need to develop universal vaccines that elicit a T-cell immune response targeting conserved antigenic determinants of pathogens. OBJECTIVE: To develop a vaccine candidate against influenza virus and coronavirus based on an attenuated influenza vector. METHODS: In pursuit of this objective, we developed a recombinant influenza vector named FluCoV-N. It incorporates attenuating modifications in the ns1 and nep genes and expresses the N-terminal half of the N protein (N1-209) of the SARS-CoV-2 virus. To assess the vector’s protective efficacy against influenza, ferrets were infected with heterologous influenza A/Austria/1516645/2022 (H3N2) virus on the 25th day after a single immunization with 9.4 log10EID50 of the studied vector. To test protection against coronavirus, hamsters were immunized once with the vector at a dose of 8.2 log10EID50 and challenged with SARS-CoV-2 virus 21 days later. RESULTS: As a result of modifications to the NS genomic segment, the constructed vector acquired a temperature-sensitive (ts) phenotype and demonstrated a heightened ability to induce type 1 interferons. It was harmless to animals when administered intranasally at high doses exceeding 8.0 log10EID50. In ferrets, a single intranasal immunization with FluCoV-N accelerated the resolution of infection caused by heterologous influenza H3N2 virus. Similar immunization in hamsters led to a 10,000-fold reduction in SARS-CoV-2 viral titers in the lungs on the second day after challenge and reduced pathology in the lungs of animals. CONCLUSION: A single intranasal immunization with the FluCoV-N vector protected from heterologous influenza or SARS-CoV-2 viruses in ferrets and hamsters.

Publisher

Doctrine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3