Registration of Images To Lidar and GIS Data Without Establishing Explicit Correspondences

Author:

Barsai Gabor,Yilmaz Alper,Nagarajan Sudhagar,Srestasathiern Panu

Abstract

Recovering the camera orientation is a fundamental problem in photogrammetry for precision 3D recovery, orthophoto generation, and image registration. In this paper, we achieve this goal by fusing the image information with information extracted from different modalities, including lidar and <small>GIS</small>. In contrast to other approaches, which require feature correspondences, our approach exploits edges across the modalities without the necessity to explicitly establish correspondences. In the proposed approach, extracted edges from different modalities are not required to have analytical forms. This flexibility is achieved by minimizing a new cost function using a Bayesian approach, which takes the Euclidean distances between the projected edges extracted from the other data source and the edges extracted from the reference image as its random variable. The proposed formulation minimizes the overall distances between the sets of edges iteratively, such that the end product results in the correct camera parameters for the reference image as well as matching features across the modalities. The initial solution can be obtained from <small>GPS/IMU</small> data. The formulation is shown to successfully handle noise and missing observations in edges. Point matching methods may fail for oblique images, especially high oblique images. We eliminate the requirement for exact point-to-point matching. The feasibility of the method is experimented with nadir and oblique images.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3