Lightweight Parallel Octave Convolutional Neural Network for Hyperspectral Image Classification

Author:

Li Dan1,Wu Hanjie1,Wang Yujian1,Li Xiaojun2,Kong Fanqiang1,Wang Qiang3

Affiliation:

1. College of Astronautics, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China

2. National Key Laboratory Science and Technology Space Microwave, China Academic Space Technology, Xian 710018, China

3. Control Science and Engineering, Harbin Institute of Technology, Harbin 150001, China

Abstract

Although most deep learning-based methods have achieved excellent performance for hyperspectral image (HSI) classification, they are often limited by complex networks and require massive training samples in practical applications. Therefore, designing an efficient, lightweight model to obtain better classification results under small samples situations remains a challenging task. To alleviate this problem, a novel, lightweight parallel octave convolutional neural network (LPOCNN) for HSI classification is proposed in this paper. First, the HSI data is preprocessed to construct two three-dimensional (3D) patch cubes with different spatial and spectral scales for each central pixel, removing redundancy and focusing on extracting spatial features and spectral features, respectively. Next, two non- deep parallel branches are created for the two inputs, which design octave convolution rather than classical 3D convolution to facilitate light weighting of the model. Then two-dimensional convolutional neural network is used to extract deeper spectral-spatial features when fusing spectral-spatial features from different parallel layers. Moreover, the spectral-spatial attention is designed to promote the classification performance even further by adaptively adjusting the weights of different spectral-spatial features according to their contribution to classification. Experiments show that our suggested LPOCNN acquires a significant advantage on classification performance over other competitive methods under small sample situations.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3