Topographic and Geomorphological Mapping and Analysis of the Chang'E-4 Landing Site on the Far Side of the Moon

Author:

Wu Bo,Li Fei,Hu Han,Zhao Yang,Wang Yiran,Xiao Peipei,Li Yuan,Liu Wai Chung,Chen Long,Ge Xuming,Yang Mei,Xu Yingqiao,Ye Qing,Wu Xueying,Zhang He

Abstract

The Chinese lunar probe Chang'E-4 successfully landed in the Von Kármán crater on the far side of the Moon. This paper presents the topographic and geomorphological mapping and their joint analysis for selecting the Chang'E-4 landing site in the Von Kármán crater. A digital topographic model (<small>DTM</small>) of the Von Kármán crater, with a spatial resolution of 30 m, was generated through the integrated processing of Chang'E-2 images (7 m/pixel) and Lunar Reconnaissance Orbiter (<small>LRO</small>) Laser Altimeter (<small>LOLA</small>) data. Slope maps were derived from the <small>DTM</small>. Terrain occlusions to both the Sun and the relay satellite were studied. Craters with diameters ≥ 70 m were detected to generate a crater density map. Rocks with diameters ≥ 2 m were also extracted to generate a rock abundance map using an <small>LRO</small> narrow angle camera (<small>NAC</small>) image mosaic. The joint topographic and geomorphological analysis identified three subregions for landing. One of them, recommended as the highest-priority landing site, was the one in which Chang'E-4 eventually landed. After the successful landing of Chang'E-4, we immediately determined the precise location of the lander by the integrated processing of orbiter, descent and ground images. We also conducted a detailed analysis around the landing location. The results revealed that the Chang'E-4 lander has excellent visibility to the Sun and relay satellite; the lander is on a slope of about 4.5° towards the southwest, and the rock abundance around the landing location is almost 0. The developed methods and results can benefit future soft-landing missions to the Moon and other celestial bodies.

Publisher

American Society for Photogrammetry and Remote Sensing

Subject

Computers in Earth Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3