Analysis of methods and techniques for prediction of natural gas consumption

Author:

Šebalj Dario1,Mesarić Josip1,Dujak Davor1

Affiliation:

1. Faculty of Economics in Osijek Josip Juraj Strossmayer University of Osijek, Osijek, Croatia

Abstract

Due to its many advantages, demand for natural gas has increased considerably and many models for predicting natural gas consumption are developed. The aim of this paper is to present an overview and systematic analysis of the latest research papers that deal with predictions of natural gas consumption for residential and commercial use from the year 2002 to 2017. Literature overview analysis was conducted using the two most relevant scientific databases Web of Science Core Collection and Scopus. The results indicate neural networks as the most common method used for predictions of natural gas consumption, while most accurate methods are genetic algorithms, support vector machines and ANFIS. Most used input variables are past natural gas consumption data and weather data, and prediction is most commonly made on daily and annual level on a country area level. Limitations of the research raise from relatively small number of analyzed papers but still research could be used for significant improving of prediction models for natural gas consumption.

Publisher

Faculty of Organisation and Informatics

Subject

Library and Information Sciences,Computer Science Applications,Information Systems

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3