Anti-oxidant Containing Nanostructured Lipid Carriers of Ritonavir: Development, Optimization, and In Vitro and In Vivo Evaluations

Author:

Jitta Srinivas Reddy,Bhaskaran Navya Ajitkumar,Salwa ,Kumar Lalit

Abstract

AbstractAcquired immunodeficiency syndrome (AIDS) is a condition caused by the infection of a retrovirus namely, human immunodeficiency virus (HIV). Currently, highly active anti-retroviral therapy (HAART), a combination of anti-viral drugs belonging to different classes is considered to be effective in the management of HIV. Ritonavir, a protease inhibitor (PI), is one of the most important components of the HAART regimen. Because of its lower bioavailability and severe side effects, presently, ritonavir is not being used as a PI. However, this drug is being used as a pharmacokinetic boosting agent for other PIs such as lopinavir and in lower doses. The current study aimed to develop nanostructured lipid carriers (NLCs) encapsulating ritonavir to reduce its side effects and enhance oral bioavailability. Ritonavir-loaded NLCs were developed using a combination of two different solid lipids and liquid lipids. Alpha-tocopherol, a well-known anti-oxidant, was used as an excipient (liquid lipid) in the development of NLCs which were prepared using a simple hot-emulsion and ultrasonication method. Drug-excipient studies were performed using Fourier transform infrared spectroscopy (FTIR) and differential scanning calorimetry (DSC). QbD approach was followed for the screening and optimization of different variables. The developed NLCs were characterized for their particle size (PS), polydispersity index (PDI), zeta potential (ZP), and entrapment efficiency (EE). Furthermore, NLCs were studied for their in vitro drug release profile, and finally, pharmacokinetic parameters were determined using in vivo pharmacokinetic studies. The optimized NLC size was in the range of 273.9 to 458.7 nm, PDI of 0.314 to 0.480, ZP of −52.2 to − 40.9 mV, and EE in the range of 47.37 to 74.51%. From in vitro drug release, it was found that the release of drug in acidic medium was higher than phosphate buffer pH 6.8. Finally, in vivo pharmacokinetic studies revealed a 7-fold enhancement in the area under the curve (AUC) and more than 10-fold higher Cmax with the optimized formulation in comparison to pure drug suspension.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

Subject

Drug Discovery,Pharmaceutical Science,Agronomy and Crop Science,Ecology,Aquatic Science,General Medicine,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3