Tropospheric Ozone Assessment Report

Author:

Archibald A. T.12,Neu J. L.3,Elshorbany Y. F.4,Cooper O. R.56,Young P. J.789,Akiyoshi H.10,Cox R. A.1,Coyle M.1112,Derwent R. G.13,Deushi M.14,Finco A.15,Frost G. J.6,Galbally I. E.1617,Gerosa G.15,Granier C.5618,Griffiths P. T.12,Hossaini R.78,Hu L.19,Jöckel P.20,Josse B.21,Lin M. Y.22,Mertens M.20,Morgenstern O.23,Naja M.24,Naik V.25,Oltmans S.26,Plummer D. A.27,Revell L. E.28,Saiz-Lopez A.29,Saxena P.30,Shin Y. M.1,Shahid I.31,Shallcross D.32,Tilmes S.33,Trickl T.34,Wallington T. J.35,Wang T.36,Worden H. M.33,Zeng G.23

Affiliation:

1. Yusuf Hamied Department of Chemistry, University of Cambridge, United Kingdom

2. National Centre for Atmospheric Science, United Kingdom

3. Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

4. School of Geosciences, College of Arts and Sciences, University of South Florida, St. Petersburg, FL, USA

5. Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, CO, USA

6. NOAA Chemical Sciences Laboratory, Boulder, CO, USA

7. Lancaster Environment Centre, Lancaster University, United Kingdom

8. Centre of Excellence in Environmental Data Science, Lancaster University,United Kingdom

9. Institute for Social Futures, Lancaster University, United Kingdom

10. Climate Modeling and Analysis Section, Center for Global Environmental Research, National Institute for Environmental Studies, Tsukuba, Japan

11. UK Centre for Ecology & Hydrology Edinburgh, Bush Estate, Penicuik, Midlothian, United Kingdom

12. The James Hutton Institute, Craigiebuckler, Aberdeen, United Kingdom

13. rdscientific, Newbury, United Kingdom

14. Meteorological Research Institute, Japan Meteorological Agency, Tsukuba, Ibaraki, Japan

15. Dipartimento di Matematica e Fisica, Università Cattolica del S.C., Brescia, Italy

16. Climate Science Centre, CSIRO Oceans and Atmosphere, Aspendale, Victoria, Australia

17. Centre for Atmospheric Chemistry, University of Wollongong, Wollongong, New South Wales, Australia

18. Laboratoire d’Aérologie, Université de Toulouse, CNRS, UPS, France

19. Department of Chemistry and Biochemistry, University of Montana, Missoula, MT, USA

20. Deutsches Zentrum für Luft- und Raumfahrt, Institut für Physik der Atmosphäre, Oberpfaffenhofen, Germany

21. Centre National de Recherches Météorologiques, Université de Toulouse, Météo-France, CNRS, Toulouse, France

22. Atmospheric & Oceanic Sciences, Princeton University and NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

23. National Institute of Water and Atmospheric Research, Wellington, New Zealand

24. Aryabhatta Research Institute of Observational Sciences, Nainital, Uttarakhand, India

25. NOAA Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA

26. NOAA Global Monitoring Laboratory, Boulder, CO, USA

27. Climate Research Division, Environment and Climate Change Canada, Montreal, Canada

28. School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand

29. Department of Atmospheric Chemistry and Climate, Institute of Physical Chemistry Rocasolano, Spanish National Research Council (CSIC), Madrid, Spain

30. School of Environmental Sciences, Jawaharlal Nehru University, New Delhi, India

31. Institute of Space Technology, Islamabad, Pakistan

32. School of Chemistry, Cantock’s Close, University of Bristol, United Kingdom

33. Atmospheric Chemistry Observations & Modeling Laboratory National Center for Atmospheric Research, Boulder, CO, USA

34. Karlsruher Institut für Technologie, IMK-IFU, Garmisch-Partenkirchen, Germany

35. Research & Advanced Engineering, Ford Motor Company, Dearborn, MI, USA

36. Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hong Kong, China

Abstract

Our understanding of the processes that control the burden and budget of tropospheric ozone has changed dramatically over the last 60 years. Models are the key tools used to understand these changes, and these underscore that there are many processes important in controlling the tropospheric ozone budget. In this critical review, we assess our evolving understanding of these processes, both physical and chemical. We review model simulations from the International Global Atmospheric Chemistry Atmospheric Chemistry and Climate Model Intercomparison Project and Chemistry Climate Modelling Initiative to assess the changes in the tropospheric ozone burden and its budget from 1850 to 2010. Analysis of these data indicates that there has been significant growth in the ozone burden from 1850 to 2000 (approximately 43 ± 9%) but smaller growth between 1960 and 2000 (approximately 16 ± 10%) and that the models simulate burdens of ozone well within recent satellite estimates. The Chemistry Climate Modelling Initiative model ozone budgets indicate that the net chemical production of ozone in the troposphere plateaued in the 1990s and has not changed since then inspite of increases in the burden. There has been a shift in net ozone production in the troposphere being greatest in the northern mid and high latitudes to the northern tropics, driven by the regional evolution of precursor emissions. An analysis of the evolution of tropospheric ozone through the 21st century, as simulated by Climate Model Intercomparison Project Phase 5 models, reveals a large source of uncertainty associated with models themselves (i.e., in the way that they simulate the chemical and physical processes that control tropospheric ozone). This structural uncertainty is greatest in the near term (two to three decades), but emissions scenarios dominate uncertainty in the longer term (2050–2100) evolution of tropospheric ozone. This intrinsic model uncertainty prevents robust predictions of near-term changes in the tropospheric ozone burden, and we review how progress can be made to reduce this limitation.

Publisher

University of California Press

Subject

Atmospheric Science,Geology,Geotechnical Engineering and Engineering Geology,Ecology,Environmental Engineering,Oceanography

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3