Environmental controls and phenology of sea ice algal growth in a future Arctic

Author:

Haddon Antoine1ORCID,Farnole Patrick1,Monahan Adam H.1,Sou Tessa2,Steiner Nadja123

Affiliation:

1. 1School of Earth and Ocean Sciences, University of Victoria, Victoria, BC, Canada

2. 2Fisheries and Oceans Canada, Institute of Ocean Sciences, Sidney, BC, Canada

3. 3Canadian Center for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, BC, Canada

Abstract

The future of Arctic sea ice algae is examined using a regional ocean and sea ice biogeochemical model, with a simulation from 1980 to 2085, considering a future scenario with strong warming. To analyze the impacts of climate change, we computed key dates in the development of sympagic blooms, corresponding to the occurrence of specific growth conditions, and designed diagnostics of ice algal phenology to estimate the onset and peak of blooms. These diagnostics help understand how the timing of light and nutrient availability governs the growth of ice algae and how environmental controls will be altered by climate change across regions. With thinner ice, photosynthetically active radiation in bottom ice will reach levels sufficient for growth earlier, resulting in a better synchrony of high levels of light and nutrients. Increases in snow cover can potentially offset the effect of thinner ice, leading to shorter periods of favorable growth conditions in certain regions. The loss of sea ice cover before the late 21st century only impacts sympagic blooms at lower latitudes, as the timing of sea ice break-up shows little change relative to other key dates at higher latitudes. In response to climate change, the model simulates a modified spatial distribution of blooms, with the emergence of highly productive areas and the loss of blooms in other regions. However, the changes in the timing of growth conditions do not substantially alter the timing of blooms, and both onset and peak ice algae see little change. The simulated lack of sensitivity of bloom onset is attributed to the delay in sea ice freeze-up projected by the model, causing a reduction of overwintering ice algae. The resulting lower initial biomass at the beginning of spring then causes a delay in the development of blooms, offsetting earlier light from thinner ice.

Publisher

University of California Press

Reference69 articles.

1. Abbatt, JPD, Leaitch, WR, Aliabadi, AA, Bertram, AK, Blanchet, JP, Boivin-Rioux, A, Bozem, H, Burkart, J, Chang, RYW, Charette, J, Chaubey, JP, Christensen, RJ, Cirisan, A, Collins, DB, Croft, B, Dionne, J, Evans, GJ, Fletcher, CG, Galí, M, Ghahreman, R, Girard, E, Gong, W, Gosselin, M, Gourdal, M, Hanna, SJ, Hayashida, H, Herber, AB, Hesaraki, S, Hoor, P, Huang, L, Hussherr, R, Irish, VE, Keita, SA, Kodros, JK, Köllner, F, Kolonjari, F, Kunkel, D, Ladino, LA, Law, K, Levasseur, M, Libois, Q, Liggio, J, Lizotte, M, Macdonald, KM, Mahmood, R, Martin, RV, Mason, RH, Miller, LA, Moravek, A, Mortenson, E, Mungall, EL, Murphy, JG, Namazi, M, Norman, AL, O’Neill, NT, Pierce, JR, Russell, LM, Schneider, J, Schulz, H, Sharma, S, Si, M, Staebler, RM, Steiner, NS, Thomas, JL, von Salzen, K, Wentzell, JJB, Willis, MD, Wentworth, GR, Xu, JW, Yakobi-Hancock, JD. 2019. Overview paper: New insights into aerosol and climate in the Arctic. Atmospheric Chemistry and Physics19(4): 2527–2560. DOI: http://dx.doi.org/10.5194/acp-19-2527-2019.

2. Abraham, C, Steiner, N, Monahan, A, Michel, C.2015. Effects of subgrid-scale snow thickness variability on radiative transfer in sea ice. Journal of Geophysical Research: Oceans120(8): 5597–5614. DOI: http://dx.doi.org/10.1002/2015JC010741.

3. Ardyna, M, Babin, M, Gosselin, M, Devred, E, Rainville, L, Tremblay, J-É. 2014. Recent Arctic Ocean sea ice loss triggers novel fall phytoplankton blooms. Geophysical Research Letters41(17): 6207–6212. DOI: http://dx.doi.org/10.1002/2014GL061047.

4. Arora, VK, Scinocca, JF, Boer, GJ, Christian, JR, Denman, KL, Flato, GM, Kharin, VV, Lee, WG, Merryfield, WJ.2011. Carbon emission limits required to satisfy future representative concentration pathways of greenhouse gases. Geophysical Research Letters38(5). DOI: http://dx.doi.org/10.1029/2010GL046270.

5. Balmaseda, MA, Mogensen, K, Weaver, AT.2013. Evaluation of the ECMWF ocean reanalysis system ORAS4. Quarterly Journal of the Royal Meteorological Society139(674): 1132–1161. DOI: http://dx.doi.org/10.1002/qj.2063.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3