Evolution of hindlimb posture in nonmammalian therapsids: biomechanical tests of paleontological hypotheses

Author:

Blob Richard W.

Abstract

Analyses of limb joint morphology in nonmammalian therapsid “mammal-like reptiles” have suggested that among many lineages, individual animals were capable of shifting between sprawling and upright hindlimb postures, much like modern crocodilians. The ability to use multiple limb postures thus might have been ancestral to the generally more upright posture that evolved during the transition from “mammal-like reptiles” to mammals. Here I derive a biomechanical model to test this hypothesis through calculations of expected posture-related changes in femoral stress for therapsid taxa using different limb postures. The model incorporates morphological data from fossil specimens and experimental data from force platform experiments on iguanas and alligators.Experimental data suggest that the evolutionary transition from sprawling to nonsprawling posture was accompanied by a change in the predominant loading regime of the limb bones, from torsion to bending. Changes in the cross-sectional morphology of the hindlimb bones between sphenacodontid “pelycosaurs” and gorgonopsid therapsids are consistent with the hypothesis that bending loads increased in importance early in therapsid evolution; thus, bending stresses are an appropriate model for the maximal loads experienced by the limb bones of theriodont therapsids. Results from the model used to estimate stresses in these taxa do not refute the use of both sprawling and more upright stance among basal theriodont therapsids. Thus, the hypothesis that the use of multiple postures was ancestral to the more upright posture typical of most mammals is biomechanically plausible. Model calculations also indicate that the axial rotation of the femur typical in sprawling locomotion can reduce peak bending stresses. Therefore, as experimental data from alligators and iguanas suggest, the evolution of nonsprawling limb posture and kinematics in therapsids might have been accompanied by increased limb bone bending stress.

Publisher

Cambridge University Press (CUP)

Subject

Paleontology,General Agricultural and Biological Sciences,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3