Affiliation:
1. Freie Universität Berlin, Germany
Abstract
An approach to universal (meta-)logical reasoning in classical higher-order logic is employed to explore and study simplifications of Kurt Gödel's modal ontological argument. Some argument premises are modified, others are dropped, modal collapse is avoided and validity is shown already in weak modal logics K and T. Key to the gained simplifications of Gödel's original theory is the exploitation of a link to the notions of filter and ultrafilter in topology.
The paper illustrates how modern knowledge representation and reasoning technology for quantified non-classical logics can contribute new knowledge to other disciplines. The contributed material is also well suited to support teaching of non-trivial logic formalisms in classroom.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献