Affiliation:
1. School of Computer and Information Technology, Beijing Jiaotong University
2. Beijing Key Laboratory of Traffic Data Analysis and Mining
3. CAAC Key Laboratory of Intelligent Passenger Service of Civil Aviation
Abstract
Sleep stage classification is essential for sleep assessment and disease diagnosis. However, how to effectively utilize brain spatial features and transition information among sleep stages continues to be challenging. In particular, owing to the limited knowledge of the human brain, predefining a suitable spatial brain connection structure for sleep stage classification remains an open question. In this paper, we propose a novel deep graph neural network, named GraphSleepNet, for automatic sleep stage classification. The main advantage of the GraphSleepNet is to adaptively learn the intrinsic connection among different electroencephalogram (EEG) channels, represented by an adjacency matrix, thereby best serving the spatial-temporal graph convolution network (ST-GCN) for sleep stage classification. Meanwhile, the ST-GCN consists of graph convolutions for extracting spatial features and temporal convolutions for capturing the transition rules among sleep stages. Experiments on the Montreal Archive of Sleep Studies (MASS) dataset demonstrate that the GraphSleepNet outperforms the state-of-the-art baselines.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献