Learning Disentangled Semantic Representation for Domain Adaptation

Author:

Cai Ruichu1,Li Zijian1,Wei Pengfei2,Qiao Jie1,Zhang Kun3,Hao Zhifeng4

Affiliation:

1. School of Computers, Guangdong University of Technology, China

2. School of Computer Science and Engineering, Nanyang Technological University, Singapore

3. Department of Philosophy, Carnegie Mellon University, USA

4. School of Mathematics and Big Data, Foshan University, China

Abstract

Domain adaptation is an important but challenging task. Most of the existing domain adaptation methods struggle to extract the domain-invariant representation on the feature space with entangling domain information and semantic information. Different from previous efforts on the entangled feature space, we aim to extract the domain invariant semantic information in the latent disentangled semantic representation (DSR) of the data. In DSR, we assume the data generation process is controlled by two independent sets of variables, i.e., the semantic latent variables and the domain latent variables. Under the above assumption, we employ a variational auto-encoder to reconstruct the semantic latent variables and domain latent variables behind the data. We further devise a dual adversarial network to disentangle these two sets of reconstructed latent variables. The disentangled semantic latent variables are finally adapted across the domains. Experimental studies testify that our model yields state-of-the-art performance on several domain adaptation benchmark datasets.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 33 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Kill Two Birds with One Stone: Domain Generalization for Semantic Segmentation via Network Pruning;International Journal of Computer Vision;2024-07-27

2. Generative Adversarial Networks for Heterogeneous Unsupervised Domain Adaptation Detection;2024 IEEE 28th International Conference on Intelligent Engineering Systems (INES);2024-07-17

3. Cross-Domain Feature Disentanglement for Interpretable Modeling of Tumor Microenvironment Impact on Drug Response;IEEE Journal of Biomedical and Health Informatics;2024-07

4. Discovering causally invariant features for out-of-distribution generalization;Pattern Recognition;2024-06

5. Empowering Unsupervised Domain Adaptation with Large-scale Pre-trained Vision-Language Models;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3