Autonomously Reusing Knowledge in Multiagent Reinforcement Learning

Author:

Silva Felipe Leno Da1,Taylor Matthew E.2,Costa Anna Helena Reali1

Affiliation:

1. University of Sao Paulo, Sao Paulo, Brazil

2. Washington State University, Pullman, USA

Abstract

Autonomous agents are increasingly required to solve complex tasks; hard-coding behaviors has become infeasible. Hence, agents must learn how to solve tasks via interactions with the environment. In many cases, knowledge reuse will be a core technology to keep training times reasonable, and for that, agents must be able to autonomously and consistently reuse knowledge from multiple sources, including both their own previous internal knowledge and from other agents. In this paper, we provide a literature review of methods for knowledge reuse in Multiagent Reinforcement Learning. We define an important challenge problem for the AI community, survey the existent methods, and discuss how they can all contribute to this challenging problem. Moreover, we highlight gaps in the current literature, motivating "low-hanging fruit'' for those interested in the area. Our ambition is that this paper will encourage the community to work on this difficult and relevant research challenge.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Large-Scale Urban Traffic Management Using Zero-Shot Knowledge Transfer in Multi-Agent Reinforcement Learning for Intersection Patterns;Robotics;2024-07-19

2. A survey on multi-agent reinforcement learning and its application;Journal of Automation and Intelligence;2024-06

3. QMARL: A Quantum Multi-Agent Reinforcement Learning Framework for Swarm Robots Navigation;2024 IEEE International Conference on Acoustics, Speech, and Signal Processing Workshops (ICASSPW);2024-04-14

4. UAV-Based Warehouse Management Using Multi-Agent RL;Advances in Computational Intelligence and Robotics;2024-01-17

5. BRNES: Enabling Security and Privacy-Aware Experience Sharing in Multiagent Robotic and Autonomous Systems;2023 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS);2023-10-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3