Affiliation:
1. National University of Singapore
Abstract
Recent advances in location-acquisition techniques have generated massive spatial trajectory data. Recurrent Neural Networks (RNNs) are modern tools for modeling such trajectory data. After revisiting RNN-based methods for trajectory modeling, we expose two common critical drawbacks in the existing uses. First, RNNs are discrete-time models that only update the hidden states upon the arrival of new observations, which makes them an awkward fit for learning real-world trajectories with continuous-time dynamics. Second, real-world trajectories are never perfectly accurate due to unexpected sensor noise. Most RNN-based approaches are deterministic and thereby vulnerable to such noise. To tackle these challenges, we devise a novel method entitled TrajODE for more natural modeling of trajectories. It combines the continuous-time characteristic of Neural Ordinary Differential Equations (ODE) with the robustness of stochastic latent spaces. Extensive experiments on the task of trajectory classification demonstrate the superiority of our framework against the RNN counterparts.
Publisher
International Joint Conferences on Artificial Intelligence Organization
Cited by
17 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献