Pruning of Deep Spiking Neural Networks through Gradient Rewiring

Author:

Chen Yanqi12,Yu Zhaofei132,Fang Wei12,Huang Tiejun132,Tian Yonghong12

Affiliation:

1. Department of Computer Science and Technology, Peking University

2. Peng Cheng Laboratory

3. Institute for Artificial Intelligence, Peking University

Abstract

Spiking Neural Networks (SNNs) have been attached great importance due to their biological plausibility and high energy-efficiency on neuromorphic chips. As these chips are usually resource-constrained, the compression of SNNs is thus crucial along the road of practical use of SNNs. Most existing methods directly apply pruning approaches in artificial neural networks (ANNs) to SNNs, which ignore the difference between ANNs and SNNs, thus limiting the performance of the pruned SNNs. Besides, these methods are only suitable for shallow SNNs. In this paper, inspired by synaptogenesis and synapse elimination in the neural system, we propose gradient rewiring (Grad R), a joint learning algorithm of connectivity and weight for SNNs, that enables us to seamlessly optimize network structure without retraining. Our key innovation is to redefine the gradient to a new synaptic parameter, allowing better exploration of network structures by taking full advantage of the competition between pruning and regrowth of connections. The experimental results show that the proposed method achieves minimal loss of SNNs' performance on MNIST and CIFAR-10 datasets so far. Moreover, it reaches a ~3.5% accuracy loss under unprecedented 0.73% connectivity, which reveals remarkable structure refining capability in SNNs. Our work suggests that there exists extremely high redundancy in deep SNNs. Our codes are available at https://github.com/Yanqi-Chen/Gradient-Rewiring.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 20 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Workload-Balanced Pruning for Sparse Spiking Neural Networks;IEEE Transactions on Emerging Topics in Computational Intelligence;2024-08

2. Efficient Structure Slimming for Spiking Neural Networks;IEEE Transactions on Artificial Intelligence;2024-08

3. Recent Advances in Scalable Energy-Efficient and Trustworthy Spiking Neural Networks: from Algorithms to Technology;ICASSP 2024 - 2024 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP);2024-04-14

4. Comparison of Bagging and Sparcity Methods for Connectivity Reduction in Spiking Neural Networks with Memristive Plasticity;Big Data and Cognitive Computing;2024-02-23

5. Toward Efficient Deep Spiking Neuron Networks: A Survey on Compression;Communications in Computer and Information Science;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3