Quadruply Stochastic Gradients for Large Scale Nonlinear Semi-Supervised AUC Optimization

Author:

Shi Wanli1,Gu Bin12,Li Xiang3,Geng Xiang1,Huang Heng42

Affiliation:

1. School of Computer & Software, Nanjing University of Information Science & Technology, P.R.China

2. JD Finance America Corporation

3. Computer Science Department, University of Western Ontario, Canada

4. Department of Electrical & Computer Engineering, University of Pittsburgh, USA

Abstract

Semi-supervised learning is pervasive in real-world applications, where only a few labeled data are available and large amounts of instances remain unlabeled. Since AUC is an important model evaluation metric in classification, directly optimizing AUC in semi-supervised learning scenario has drawn much attention in the machine learning community. Recently, it has been shown that one could find an unbiased solution for the semi-supervised AUC maximization problem without knowing the class prior distribution. However, this method is hardly scalable for nonlinear classification problems with kernels. To address this problem, in this paper, we propose a novel scalable quadruply stochastic gradient algorithm (QSG-S2AUC) for nonlinear semi-supervised AUC optimization. In each iteration of the stochastic optimization process, our method randomly samples a positive instance, a negative instance, an unlabeled instance and their random features to compute the gradient and then update the model by using this quadruply stochastic gradient to approach the optimal solution. More importantly, we prove that QSG-S2AUC can converge to the optimal solution in O(1/t), where t is the iteration number. Extensive experimental results on  a variety of benchmark datasets show that QSG-S2AUC is far more efficient than the existing state-of-the-art algorithms for semi-supervised AUC maximization, while retaining the similar generalization performance.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Online Semi-supervised Pairwise Learning;2023 International Joint Conference on Neural Networks (IJCNN);2023-06-18

2. Efficient Semi-Supervised Adversarial Training without Guessing Labels;2022 IEEE International Conference on Data Mining (ICDM);2022-11

3. A Unified Framework against Topology and Class Imbalance;Proceedings of the 30th ACM International Conference on Multimedia;2022-10-10

4. Incremental learning algorithm for large-scale semi-supervised ordinal regression;Neural Networks;2022-05

5. Triply stochastic gradient method for large-scale nonlinear similar unlabeled classification;Machine Learning;2021-07-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3