Predicting the Visual Focus of Attention in Multi-Person Discussion Videos

Author:

Bai Chongyang1,Kumar Srijan23,Leskovec Jure2,Metzger Miriam4,F. Nunamaker Jay5,Subrahmanian V. S.1

Affiliation:

1. Dartmouth College

2. Stanford University

3. Georgia Institute of Technology

4. University of California Santa Babara

5. University of Arizona

Abstract

Visual focus of attention in multi-person discussions is a crucial nonverbal indicator in tasks such as inter-personal relation inference, speech transcription, and deception detection. However, predicting the focus of attention remains a challenge because the focus changes rapidly, the discussions are highly dynamic, and the people's behaviors are inter-dependent. Here we propose ICAF (Iterative Collective Attention Focus), a collective classification model to jointly learn the visual focus of attention of all people. Every person is modeled using a separate classifier. ICAF models the people collectively---the predictions of all other people's classifiers are used as inputs to each person's classifier. This explicitly incorporates inter-dependencies between all people's behaviors. We evaluate ICAF on a novel dataset of 5 videos (35 people, 109 minutes, 7604 labels in all) of the popular Resistance game and a widely-studied meeting dataset with supervised prediction. See our demo at https://cs.dartmouth.edu/dsail/demos/icaf. ICAF outperforms the strongest baseline by 1%--5% accuracy in predicting the people's visual focus of attention. Further, we propose a lightly supervised technique to train models in the absence of training labels. We show that light-supervised ICAF performs similar to the supervised ICAF, thus showing its effectiveness and generality to previously unseen videos.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimizing parameter search for community detection in time-evolving networks of complex systems;Chaos: An Interdisciplinary Journal of Nonlinear Science;2024-02-01

2. Dynamic Graph Representation Learning With Neural Networks: A Survey;IEEE Access;2024

3. WDP-GAN: Weighted Graph Generation With GAN Under Differential Privacy;IEEE Transactions on Network and Service Management;2023-12

4. Wheelchair-Centered Omnidirectional Gaze-Point Estimation in the Wild;IEEE Transactions on Human-Machine Systems;2023-06

5. Estimate Gaze Point of Table-Meeting Participants by Spherical Camera;IEEJ Transactions on Electronics, Information and Systems;2023-05-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3