LDP-FL: Practical Private Aggregation in Federated Learning with Local Differential Privacy

Author:

Sun Lichao1,Qian Jianwei2,Chen Xun2

Affiliation:

1. Lehigh University

2. Samsung Research America

Abstract

Training deep learning models on sensitive user data has raised increasing privacy concerns in many areas. Federated learning is a popular approach for privacy protection that collects the local gradient information instead of raw data. One way to achieve a strict privacy guarantee is to apply local differential privacy into federated learning. However, previous works do not give a practical solution due to two issues. First, the range difference of weights in different deep learning model layers has not been explicitly considered when applying local differential privacy mechanism. Second, the privacy budget explodes due to the high dimensionality of weights in deep learning models and many query iterations of federated learning. In this paper, we proposed a novel design of local differential privacy mechanism for federated learning to address the abovementioned issues. It makes the local weights update differentially private by adapting to the varying ranges at different layers of a deep neural network, which introduces a smaller variance of the estimated model weights, especially for deeper models. Moreover, the proposed mechanism bypasses the curse of dimensionality by parameter shuffling aggregation. A series of empirical evaluations on three commonly used datasets in prior differential privacy works, MNIST, Fashion-MNIST and CIFAR-10, demonstrate that our solution can not only achieve superior deep learning performance but also provide a strong privacy guarantee at the same time.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Efficient Federated Learning With Enhanced Privacy via Lottery Ticket Pruning in Edge Computing;IEEE Transactions on Mobile Computing;2024-10

2. Efficient and Secure Federated Learning Against Backdoor Attacks;IEEE Transactions on Dependable and Secure Computing;2024-09

3. Communication-Efficient and Privacy-Preserving Aggregation in Federated Learning With Adaptability;IEEE Internet of Things Journal;2024-08-01

4. QP-LDP for Better Global Model Performance in Federated Learning;IEEE Internet of Things Journal;2024-08-01

5. FedLRDP: Federated Learning Framework with Local Random Differential Privacy;2024 International Joint Conference on Neural Networks (IJCNN);2024-06-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3