Importance-Aware Semantic Segmentation for Autonomous Driving System

Author:

Chen Bi-ke1,Gong Chen1,Yang Jian1

Affiliation:

1. Nanjing University of Science and Technology

Abstract

Semantic Segmentation (SS) partitions an image into several coherent semantically meaningful parts, and classifies each part into one of the pre-determined classes. In this paper, we argue that existing SS methods cannot be reliably applied to autonomous driving system as they ignore the different importance levels of distinct classes for safe-driving. For example, pedestrians in the scene are much more important than sky when driving a car, so their segmentations should be as accurate as possible. To incorporate the importance information possessed by various object classes, this paper designs an "Importance-Aware Loss" (IAL) that specifically emphasizes the critical objects for autonomous driving. IAL operates under a hierarchical structure, and the classes with different importance are located in different levels so that they are assigned distinct weights. Furthermore, we derive the forward and backward propagation rules for IAL and apply them to deep neural networks for realizing SS in intelligent driving system. The experiments on CamVid and Cityscapes datasets reveal that by employing the proposed loss function, the existing deep learning models including FCN, SegNet and ENet are able to consistently obtain the improved segmentation results on the pre-defined important classes for safe-driving.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Fusion of hierarchical class graphs for remote sensing semantic segmentation;Information Fusion;2024-09

2. Active Reinforcement Learning for the Semantic Segmentation of Urban Images;Canadian Journal of Remote Sensing;2024-07-30

3. RS2G: Data-Driven Scene-Graph Extraction and Embedding for Robust Autonomous Perception and Scenario Understanding;2024 IEEE/CVF Winter Conference on Applications of Computer Vision (WACV);2024-01-03

4. One-shot Unsupervised Domain Adaptation with Personalized Diffusion Models;2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops (CVPRW);2023-06

5. Full Semantic Constructed Network for Urban Use Classification From Very High-Resolution Optical Remote Sensing Imagery;IEEE Transactions on Geoscience and Remote Sensing;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3