Graph Neural Architecture Search

Author:

Gao Yang12,Yang Hong3,Zhang Peng4,Zhou Chuan52,Hu Yue12

Affiliation:

1. Institute of Information Engineering, Chinese Academy of Sciences, Beijing, China

2. School of Cyber Security, University of Chinese Academy of Sciences, Beijing, China

3. Centre for Artificial Intelligence, University of Technology Sydney, Australia

4. Ant Financial Services Group, Hangzhou, China

5. Academy of Mathematics and Systems Science, Chinese Academy of Sciences, Beijing, China

Abstract

Graph neural networks (GNNs) emerged recently as a powerful tool for analyzing non-Euclidean data such as social network data. Despite their success, the design of graph neural networks requires heavy manual work and domain knowledge. In this paper, we present a graph neural architecture search method (GraphNAS) that enables automatic design of the best graph neural architecture based on reinforcement learning. Specifically, GraphNAS uses a recurrent network to generate variable-length strings that describe the architectures of graph neural networks, and trains the recurrent network with policy gradient to maximize the expected accuracy of the generated architectures on a validation data set. Furthermore, to improve the search efficiency of GraphNAS on big networks, GraphNAS restricts the search space from an entire architecture space to a sequential concatenation of the best search results built on each single architecture layer. Experiments on real-world datasets demonstrate that GraphNAS can design a novel network architecture that rivals the best human-invented architecture in terms of validation set accuracy. Moreover, in a transfer learning task we observe that graph neural architectures designed by GraphNAS, when transferred to new datasets, still gain improvement in terms of prediction accuracy.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 52 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Neural architecture search: A contemporary literature review for computer vision applications;Pattern Recognition;2024-03

2. How predictors affect the RL-based search strategy in Neural Architecture Search?;Expert Systems with Applications;2024-03

3. AutoTGRL: an automatic text-graph representation learning framework;Neural Computing and Applications;2023-12-08

4. Disparity, Inequality, and Accuracy Tradeoffs in Graph Neural Networks for Node Classification;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

5. Node-dependent Semantic Search over Heterogeneous Graph Neural Networks;Proceedings of the 32nd ACM International Conference on Information and Knowledge Management;2023-10-21

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3