A Neural Network Auction For Group Decision Making Over a Continuous Space

Author:

Bachrach Yoram1,Gemp Ian1,Garnelo Marta1,Kramar Janos1,Eccles Tom1,Rosenbaum Dan1,Graepel Thore1

Affiliation:

1. DeepMind

Abstract

We propose a system for conducting an auction over locations in a continuous space. It enables participants to express their preferences over possible choices of location in the space, selecting the location that maximizes the total utility of all agents. We prevent agents from tricking the system into selecting a location that improves their individual utility at the expense of others by using a pricing rule that gives agents no incentive to misreport their true preferences. The system queries participants for their utility in many random locations, then trains a neural network to approximate the preference function of each participant. The parameters of these neural network models are transmitted and processed by the auction mechanism, which composes these into differentiable models that are optimized through gradient ascent to compute the final chosen location and charged prices.

Publisher

International Joint Conferences on Artificial Intelligence Organization

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3