Effect of uniform time on the transmission of signals in rail open systems

Author:

Chrzan Marcin1

Affiliation:

1. Kazimierz Pulaski University of Technology and Humanities in Radom, Faculty of Transport, Electrical Engineering and Information Technology, Radom, Poland

Abstract

Railroads and the Rail Traffic Control Systems installed on them in Poland have recently been undergoing rapid technological development (Brodzik, 2019). Modern transportation solutions are susceptible to electromagnetic interference (Paś and Rosiński, 2017). Development of modern railroad infrastructure means not only stations and modern rolling stock, but also safe and reliable train traffic control systems based on the latest telecommunication and IT technologies (Ciszewski et al., 2017). In the last century these technologies were still considered dangerous and were introduced with great fear. Today, computerized systems for controlling railway traffic on the track are becoming the norm. Systems are created as "overlays" for existing relay systems or autonomous systems are built based on microprocessor systems (Burdzik et al., 2017). Today it is hard to imagine a modern control room without computer equipment. The introduction of microprocessor technology to railroad traffic control devices took place at the turn of the century. However, the use of modern radio systems in rail transport is the moment when technology based on the appeared in the world LTE (Long-Term evolution) standard. The development of modern data transmission technologies is integrally connected with the mobility of its users. In the presented article the author has tried to determine the impact of transmission synchronization on the basic transmission parameters of LTE signal (Chrzan, 2021). The convenience of using rail communications for its users is the possibility of uninterrupted access to data transmission services along the entire route of the train. Therefore, the research presented in this article was focused on the use of the public radio communication network for passenger data transmission and data transmission for railroad needs. The article presents the influence of synchronisation of data transmission in open railway systems using GPS (Global Positioning System) technology. It presents a description of the physical phenomena associated with synchronisation, and presents the author's method for carrying out measurements on railway line No. 4. For this purpose, a diagnostic station was built and special software for data transmission encryption was prepared. The process of synchronisation of clocks with the use of uniform time was adopted as the basis. General measurement results and conclusions resulting from the use of open transmission in railway radiocommunication systems synchronised by the GPS system signal are presented.

Publisher

Index Copernicus

Subject

Transportation,Automotive Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3