Experimental study of the fracture of CT specimens printed in PLA as a function of the raster width

Author:

Aourik O.1ORCID,Othmani M.1ORCID,Chouaf A.1ORCID

Affiliation:

1. Laboratory of Mechanics, Engineering and Innovation, Hassan II University, National School of Electricity and Mechanics, Casablanca, Morocco

Abstract

The FDM (Fused Deposition Modelling) additive manufacturing process is characterised by a large number of process variables that determine the mechanical properties and quality of the manufactured parts. When printing layer by layer, the filaments constituting the layer are welded on the one hand between them in the same layer and on the other hand between the superimposed layers, this welding develops on the contact surfaces (raster width) along the deposited filaments. The quality of this welding determines the resistance to crack propagation between filaments and between layers. This article aims to study the effect of the width of the raster on the resistance to crack propagation in a structure obtained by FDM.We have developed an experimental approach from CT specimens to determine the tensile strength of polylactic acid (PLA) polymers, considering the J-Integral method. And given the complexity of the problem, three cases of raster width (l=0.42 mm, l=0.56 mm and l=0.68 mm) have been treated.According to the results obtained (J, ∆a), the resistance to crack propagation in the parts printed by FDM seems to be better when the width of the filament is small. Indeed, the energy necessary to break the specimen is relatively greater than in the case of a larger width. This finding was confirmed by comparing the values of J for a given advancement of the crack for the three cases studied.In order to present an exhaustive study, we focused on the effect of raster widths (including 0.42 mm, 0.56 mm to 0.68 mm) on the crack propagation of printed PLA. This study is in progress for other printing parameters. To highlight the cracking mechanisms, microscopic observations will be developed in greater depth at the SEM.Our analysis can be used as decision support in the design of FDM parts. In effect, we can choose the raster width that would provide the resistance to crack propagation desired for a functional part.In this article, we analysed the damage mechanism of CT specimens printed by FDM. This subject represents a new direction for many lines of research. For our study, we used the J-Integral theoretical approach to study the fracture behaviour of these parts by determining the resistance curves (J-∆a).

Publisher

Index Copernicus

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3