Finite element analysis of thermal stress in Cu2O coating synthesized on Cu substrate

Author:

Shorinov O.1

Affiliation:

1. Department of Aircraft Engines Manufacturing Technologies, Faculty of Aircraft Engines, National Aerospace University «Kharkiv Aviation Institute», Kharkiv, 61070, Ukraine

Abstract

The paper aims to find the magnitude and nature of thermal residual stresses that occur during cooling of a copper sample with a thermally synthesized oxide layer of Cu2O. Thermo-mechanical analysis was performed by the finite element method using Ansys Software. The results of thermal analysis were used to study the resulting stress-strain state of the thin film/coating system after cooling. Based on the modeling results, the paper determined the most stress-strain areas of the sample with a coating, which are the free edges of the interfaces between the copper substrate and the Cu2O oxide layer. The main limitations of the study are the use of certain simplifications in the condition setup, for instance, uniform cooling of the thin film/coating system, homogeneity and isotropy of substrate and thin film materials, invariance of their properties with temperature changes, etc. The results obtained can be used to control the stress-strain state of the thin film/coating system and prevent deformations and destruction of thin-film structures during their production and operation of products with them. The study of new promising methods for the formation of oxide nanostructures, for instance in a plasma environment, requires a sufficient theoretical basis in addressing the origin and development of stresses.

Publisher

Index Copernicus

Subject

General Materials Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3