Removal of Acid Red 27, Reactive Black 5 and Acid Green 16 from Aqueous Solutions using Potassium Ferrate(VI)

Author:

Thomas Maciej1,Kliś Simona2,Barbusiński Krzysztof3,Chyc Marek4

Affiliation:

1. Chemiqua Company, ul. Skawińska 25/1, 31-066 Kraków, Poland

2. Graduate of Silesian Environmental Doctoral Studies of the Central Mining Institute, Plac Gwarków 1, 40-166 Katowice, Poland

3. Silesian University of Technology, Institute of Water and Wastewater Engineering, ul. Konarskiego 18, 44-100 Gliwice, Poland

4. State Higher Vocational School in Tarnów, Institute of Mathematical and Natural Science, ul. Mickiewicza 8, 33-100 Tarnów, Poland

Abstract

The article presents the possibility of using potassium ferrate(VI) (K2FeO4) to remove dyes (Acid Red 27, Reactive Black 5, Acid Green 16) belonging to the single azo, double azo and triarylmethane classes from aqueous solutions with an initial concentration of 100 mg/l (Chemical Oxygen Demand (COD) values for AR27, RB5 and AG16 sulutions were 172, 156 and 198 mg O2/l, respectively). For the most favorable values of oxidation parameters of AR27 and RB5 (pH 7, K2FeO4 concentration, 180 and 240 mg/l, respectively, reaction time 10 min), visual discolouration of the aqueous solutions investigated and a decrease in COD values of 83.7% and 81.4%, respectively, were achieved. In the case of AG 16 dye, in the most favorable conditions of the oxidation process (pH 3, K2FeO4, concentration 300 mg/l, 15 min), visual discolouration and a decrease in the COD value of 83.8% were also obtained. The probable reasons for the higher resistance of AG16 to oxidation using K2FeO4 compared to AR27 and RB5 were also explained, based on the analysis of the structure and type of bonds present in the molecule AG 16.

Publisher

Index Copernicus

Subject

Industrial and Manufacturing Engineering,General Environmental Science,Materials Science (miscellaneous),Business and International Management

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3