Abstract
Content-addressable memory (CAM) is a prominent hardware for high-speed lookup search, but consumes larger power. Traditional NOR and NAND match-line (ML) architectures suffer from a short circuit current path sharing and charge sharing respectively during precharge. The recently proposed precharge-free CAM suffers from high search delay and the subsequently proposed self-controlled precharge-free CAM suffers from high power consumption. This paper presents a hybrid self-controlled precharge-free (HSCPF) CAM architecture, which uses a novel charge control circuitry to reduce search delay as well as power consumption. The proposed and existing CAM ML architectures were developed using CMOS 45nm technology node with a supply voltage of 1 V. Simulation results show that the proposed HSCPF CAM-type ML design reduces power consumption and search delay effectively when compared to recent precharge-free CAM-type ML architectural designs.
Publisher
The Scientific and Technological Research Council of Turkey (TUBITAK-ULAKBIM)
Subject
Electrical and Electronic Engineering,General Computer Science
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献