Hardware realization of the multiply and accumulate operation on radio-frequency signals with magnetic tunnel junctions

Author:

Leroux Nathan,Mizrahi AliceORCID,Marković Danijela,Sanz-Hernández Dédalo,Trastoy Juan,Bortolotti Paolo,Martins Leandro,Jenkins Alex,Ferreira Ricardo,Grollier Julie

Abstract

Abstract Artificial neural networks are a valuable tool for radio-frequency (RF) signal classification in many applications, but the digitization of analog signals and the use of general purpose hardware non-optimized for training make the process slow and energetically costly. Recent theoretical work has proposed to use nano-devices called magnetic tunnel junctions, which exhibit intrinsic RF dynamics, to implement in hardware the multiply and accumulate (MAC) operation—a key building block of neural networks—directly using analog RF signals. In this article, we experimentally demonstrate that a magnetic tunnel junction can perform a multiplication of RF powers, with tunable positive and negative synaptic weights. Using two magnetic tunnel junctions connected in series, we demonstrate the MAC operation and use it for classification of RF signals. These results open a path to embedded systems capable of analyzing RF signals with neural networks directly after the antenna, at low power cost and high speed.

Funder

Délégation Générale pour l'Armement

Agence Nationale de la Recherche

H2020 European Research Council

Publisher

IOP Publishing

Subject

General Medicine

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3