Designing polar textures with ultrafast neuromorphic features from atomistic simulations

Author:

Prosandeev SergeyORCID,Prokhorenko Sergei,Nahas Yousra,Yang Yali,Xu Changsong,Grollier Julie,Talbayev Diyar,Dkhil Brahim,Bellaiche L

Abstract

Abstract This review summarizes recent works, all using a specific atomistic approach, that predict and explain the occurrence of key features for neuromorphic computing in three archetypical dipolar materials, when they are subject to THz excitations. The main ideas behind such atomistic approach are provided, and illustration of model relaxor ferroelectrics, antiferroelectrics, and normal ferroelectrics are given, highlighting the important potential of polar materials as candidates for neuromorphic computing. Some peculiar emphases are made in this Review, such as the connection between neuromorphic features and percolation theory, local minima in energy path, topological transitions and/or anharmonic oscillator model, depending on the material under investigation. By considering three different and main polar material families, this work provides a complete and innovative toolbox for designing polar-based neuromorphic systems.

Funder

Department of Defense

Basic Energy Sciences

ONR

Arkansas Research Alliance

ARO

European Union

U.S. Department of Energy

Q-MEEN-C

NSF

Publisher

IOP Publishing

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Editorial: Focus issue on topological solitons for neuromorphic systems;Neuromorphic Computing and Engineering;2024-02-02

2. Toward Ultimate Memory with Single-Molecule Multiferroics;Journal of the American Chemical Society;2023-11-10

3. Topological phases in polar oxide nanostructures;Reviews of Modern Physics;2023-04-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3