Electromicrofluidic device with integrated PDMS microchannel and laser-induced graphene electrodes for electrochemical detection of cardiac biomarker in a point-of-care platform

Author:

Dudala SohanORCID,Dubey Satish KumarORCID,Javed Arshad,Ganguly Anasuya,Goel SanketORCID

Abstract

Abstract By providing a facile and scalable alternative to otherwise complex and resource-intensive synthesis of graphene, laser-induced graphene (LIG) is spearheading the translation of graphene-based propositions to deployable technologies for societal benefit. LIG is a versatile and economical synthesis approach which is being used on a variety of substrates and in a multitude of applications—including miniaturized sensing systems. One aspect that has not been addressed thoroughly in LIG-based miniaturized sensing systems is its successful integration with microfluidics and its possible use in point-of-care settings. To further diversify the applications of LIG with integrated microfluidics, this work reports on the development of an integrated flexible microfluidics-LIG based electrochemical biosensor. The work describes the methodology to develop a polydimethylsiloxane-LIG scribed polyamide microfluidic device in a leakage-free flexible application. In view of the excellent electrical and electrochemical properties of LIG, such device has been employed for electrochemical biosensing. The biosensing capabilities of the microfluidic device were validated via sensing of cardiac troponin I—a gold standard cardiac biomarker for early identification of acute myocardial infarction (AMI). The developed biosensor demonstrated a detection and quantification limit of 45.33 pg ml−1 and 151.10 pg ml−1 respectively, which are in clinically significant ranges for diagnosis of AMI. The µ-fluidic biosensor was also analyzed for stability and interference with other cardiac biomarkers. The developed integrated µ-fluidic electrochemical biosensor was evaluated for possible point-of-source applications in conjunction with a custom 3D printed peristaltic pump and smartphone-enabled miniaturized potentiostat.

Funder

Central Analytical Laboratories

Hyderabad Campus

Ms. Jayapiriya

DST

Pilani Campus

Programme of GOI

Department of Science and Technology, India

Technology Development

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3