Bottom-up micromachined PZT film-based ultrasonic microphone with compressible parylene tube

Author:

Huang Chung-Hao,Feng Guo-HuaORCID

Abstract

Abstract This paper reports on a micromachined ultrasonic microphone using a bottom-up fabrication scheme. Starting with a 4 μm-thick titanium foil as the substrate, each functional film and key element was added to the foil substrate to complete the ultrasonic microphone. The piezoelectric lead zirconate titanate film hydrothermally grown on the patterned substrate with low residual stress effectively deflected the unimorph-sensing cantilever array of the microphone under ultrasound pressure. The created cantilever array structure secured on a 250 μm-thick SU8 hollow plate formed an ultrasonic microphone plate that was tested with a sensitivity of −60 dBV Pa−1 at 21 kHz (with 0 dB gain amplification) and an operation bandwidth of 5–55 kHz. Different thicknesses of parylene films ranging from 0.5 to 2 μm overlaid over the entire sensing region and converted the cantilever-to-diaphragm-structured microphone for further investigation. An enhanced result was observed when the deposited parylene film thickness was in the submicron range. The sensitivity of the microphone can be further enhanced by up to 33% by adding a parylene-film-made compressible tube to act as a Helmholtz resonator (HR). The HR model was discussed and compared with the experimental results. The output amplitude of the developed microphone assembled with the compressible tube demonstrates a 15 dB increase compared to that of a commercial capacitive MEMS ultrasonic microphone.

Funder

National Science and Technology Council

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3