MEMS audio speakers *

Author:

Garud MeeraORCID,Pratap RudraORCID

Abstract

Abstract Miniaturization of electro-mechanical sensors and actuators has benefited from an advancement in CMOS technology over the years. However, miniaturization of audio speakers has seen considerable development only in the recent times. This paper reviews the developments in micro-electro-mechanical-systems (MEMS) audio speaker research and the initial commercial products available in the market. At first glance, it appears that the relatively slow development of MEMS speakers can be attributed to the fact that the principle of actuation has remained unchanged for several decades. Unfortunately, the physics behind audible sound production holds us back from exclusively adopting miniaturized speakers—sound pressure level is directly proportional to the area of the sound radiating surface. Nevertheless, researchers are continuing to explore new avenues for designing and developing MEMS speakers, without limiting themselves to the existing actuation principles. With newly discovered materials and improving technology, the research in MEMS speakers is gaining attention and new products are emerging. A speaker design based on piezoelectric actuation or electrostatics actuation is favorable at MEMS scale. Indian research community is also contributing to advances in MEMS speakers and near-ultrasonic devices. This paper reviews the development in MEMS audio speakers in India and in the world. The tabulated review findings aim to offer readers an overview of the development of micro-speakers and to provide guidance for designing new micro-speakers.

Funder

Ministry of Electronics and Information technology

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Reference126 articles.

1. Cricket inspired micro speakersIndian Institute of Science, Bangalore;Garud,2020

2. Review of recent development of MEMS speakers;Wang;Micromachines,2021

3. Recent trends in structures and interfaces of mems transducers for audio applications: a review;Gemelli;Micromachines,2023

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3