Multiscale hierarchical decomposition methods for ill-posed problems

Author:

Kindermann StefanORCID,Resmerita ElenaORCID,Wolf TobiasORCID

Abstract

Abstract The multiscale hierarchical decomposition method (MHDM) was introduced in Tadmor et al (2004 Multiscale Model. Simul. 2 554–79; 2008 Commun. Math. Sci. 6 281–307) as an iterative method for total variation (TV) regularization, with the aim of recovering details at various scales from images corrupted by additive or multiplicative noise. Given its success beyond image restoration, we extend the MHDM iterates in order to solve larger classes of linear ill-posed problems in Banach spaces. Thus, we define the MHDM for more general convex or even nonconvex penalties, and provide convergence results for the data fidelity term. We also propose a flexible version of the method using adaptive convex functionals for regularization, and show an interesting multiscale decomposition of the data. This decomposition result is highlighted for the Bregman iteration method that can be expressed as an adaptive MHDM. Furthermore, we state necessary and sufficient conditions when the MHDM iteration agrees with the variational Tikhonov regularization, which is the case, for instance, for one-dimensional TV denoising. Finally, we investigate several particular instances and perform numerical experiments that point out the robust behavior of the MHDM.

Funder

Austrian Science Fund

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Reference43 articles.

1. A multiscale image representation using hierarchical (BV,L 2) decompositions;Tadmor;Multiscale Model. Simul.,2004

2. Multiscale hierarchical decomposition of images with applications to deblurring, denoising and segmentation;Nezzar;Commun. Math. Sci.,2008

3. Nonlinear total variation based noise removal algorithms;Rudin;Physica D,1992

4. Hierarchical construction of bounded solutions of div u = f in critical regularity spaces;Tadmor,2012

5. A multiscale theory for image registration and nonlinear inverse problems;Modin;Adv. Math.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3