Cone-beam consistency conditions for planar trajectories with parallel and perpendicular detectors

Author:

Nguyen HungORCID,Clackdoyle RolfORCID,Desbat LaurentORCID

Abstract

Abstract Cone-beam (CB) projections provide a first-order model for x-ray imaging with an area detector. CB consistency conditions (CBCCs), also known as range conditions for the 3D divergent x-ray transform, are equations that express the redundant information in a collection of CB projections. For applications purposes, CBCCs are most suitably expressed in terms of detector coordinates. CBCCs are only known for a few geometrical configurations, which depend on the source and detector trajectories. Here we only consider source trajectories that lie in a plane, and detector orientations that are parallel to the trajectory plane, or perpendicular to it. The parallel detector is stationary, but the vertical detector rotates around the center of the circular trajectory. We unify and generalize the existing known CBCCs for planar trajectories, by creating an intermediate geometry consisting of a parallel, rotating detector, and we develop new CBCCs for this geometry. Our main result is a theorem on CBCCs for a perpendicular detector, which must necessarily move in response to movement of the source. We also provide a theorem for the more difficult situation of a perpendicular detector but without the restriction that the target object be on one side or the other of the trajectory plane. We present a simple numerical simulations for a toy calibration problem to provide an example application of the new CBCCs.

Funder

Fonds Unique Interministériel

Agence Nationale de la Recherche

Publisher

IOP Publishing

Reference27 articles.

1. Beam hardening correction using cone beam consistency conditions;Abdurahman;IEEE Trans. Med. Imaging,2018

2. Epipolar consistency in transmission imaging;Aichert;IEEE Trans. Med. Imaging,2015

3. Epipolar consistency in fluoroscopy for image-based tracking;Aichert,2015

4. Necessary and sufficient consistency conditions for fanbeam projections along a line;Clackdoyle;IEEE Trans. Nucl. Sci.,2013

5. Full data consistency conditions for cone-beam projections with sources on a plane;Clackdoyle;Phys. Med. Biol.,2013

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3