Masked unbiased principles for parameter selection in variational image restoration under Poisson noise

Author:

Bevilacqua FrancescaORCID,Lanza AlessandroORCID,Pragliola MonicaORCID,Sgallari FiorellaORCID

Abstract

Abstract In this paper we address the problem of automatically selecting the regularization parameter in variational models for the restoration of images corrupted by Poisson noise. More specifically, we first review relevant existing unmasked selection criteria which fully exploit the acquired data by considering all pixels in the selection procedure. Then, based on an idea originally proposed by Carlavan and Blanc-Feraud to effectively deal with dark backgrounds and/or low photon-counting regimes, we introduce and discuss the masked versions—some of them already existing—of the considered unmasked selection principles formulated by simply discarding the pixels measuring zero photons. However, we prove that such a blind masking strategy yields a bias in the resulting principles that can be overcome by introducing a novel positive Poisson distribution correctly modeling the statistical properties of the undiscarded noisy data. Such distribution is at the core of newly proposed masked unbiased counterparts of the discussed strategies. All the unmasked, masked biased and masked unbiased principles are extensively compared on the restoration of different images in a wide range of photon-counting regimes. Our tests allow to conclude that the novel masked unbiased selection strategies, on average, compare favorably with unmasked and masked biased counterparts.

Funder

Istituto Nazionale di Alta Matematica \"Francesco Severi\"

Publisher

IOP Publishing

Subject

Applied Mathematics,Computer Science Applications,Mathematical Physics,Signal Processing,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Parameter-free restoration of piecewise smooth images;ETNA - Electronic Transactions on Numerical Analysis;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3