Abstract
Abstract
We consider the problem of finding a compactly supported potential in the multidimensional Schrödinger equation from its differential scattering cross section (squared modulus of the scattering amplitude) at fixed energy. In the Born approximation this problem simplifies to the phase retrieval problem of reconstructing the potential from the absolute value of its Fourier transform on a ball. To compensate for the missing phase information we use the method of a priori known background scatterers. In particular, we propose an iterative scheme for finding the potential from measurements of a single differential scattering cross section corresponding to the sum of the unknown potential and a known background potential, which is sufficiently disjoint. If this condition is relaxed, then we give similar results for finding the potential from additional monochromatic measurements of the differential scattering cross section of the unknown potential without the background potential. The performance of the proposed algorithms is demonstrated in numerical examples. In the present work we significantly advance theoretically and numerically studies of Agaltsov et al (2019 Inverse Problems
35 24001) and Novikov and Sivkin (2021 Inverse Problems
37 055011).
Funder
Deutsche Forschungsgemeinschaft
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献