Abstract
Abstract
Enantioselective interactions of chiral molecules include distinct absorptions to opposite-handed circularly polarized light, known as chiral absorption. Traditionally, chiral absorption has been primarily attributed to electric dipole (ED) and magnetic dipole (MD) interaction with molecular chirality. However, this approach falls short for large molecules that support high-order multipolar components, such as electric quadrupole (EQ) moment. Here, we introduce a theoretical model to study the chiral absorption of large molecules in the presence of plasmonic nanostructures. This model considers both ED–MD interaction and ED–EQ interaction enhanced by a resonant structure. We numerically study such interactions of the chiral molecular solution in the vicinity of an achiral plasmonic nano-resonator. Our results show the distinct spectral information of the chiral medium on- and off-resonance of the resonator.
Funder
Dynamic Research Enterprise for Multidisciplinary Engineering Sciences (DREMES) at Zhejiang University and the University of Illinois at Urbana-Champaign
Jump ARCHES endowment through the Health Care Engineering Systems Center
National Institute of General Medical Sciences