A low-profile consolidated metastructure for multispectral signature management

Author:

Gupta Nitish KumarORCID,Singh Gaganpreet,Wanare Harshawardhan,Ramakrishna S Anantha,Srivastava Kumar Vaibhav,Ramkumar JORCID

Abstract

Abstract This work pertains to the design, numerical investigation, and experimental demonstration of an optically transparent, lightweight, and conformable metastructure that exhibits multispectral signature management capabilities despite its extremely low-profile configuration. In comparison to the existing hierarchical approaches of designing multispectral stealth solutions, attention has been paid to accommodate the conflicting requirements of radar and infrared (IR) stealth using a single metasurface layer configuration, which required a few constraints to be incorporated during the design stage to ensure compatibility. This methodology promulgates the desired multispectral response with minimal manufacturing footprint and facilitates an efficient integration with the other existing countermeasure platforms. The resulting design exhibits a polarization-insensitive and incident angle stable broadband microwave absorption with at least 90% absorption ranging from 8.2 to 18.4 GHz. Concomitantly it also exhibits an averaged IR emissivity of 0.46 in the 8–14 µm long-wave IR regime, along with high optical transparency (71% transmission at 632.8 nm). Notably, the total thickness of the metastructure stands at 0.10 λ L ( λ L corresponds to the wavelength at lowest frequency). The metastructure has been fabricated with indium tin oxide coated polyethylene terephthalate sheets, on which the frequency selective pattern is machined using Excimer laser micromachining, and the performances are verified experimentally. Furthermore, a hybrid theoretical model has been developed that not only provides crucial insights into the operation of metastructure but also presents a methodical semi-analytical approach to design.

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3