Strong coupling in two-dimensional materials-based nanostructures: a review

Author:

Qing Ye MingORCID,Ren Yongze,Lei Dangyuan,Ma Hui FengORCID,Cui Tie JunORCID

Abstract

Abstract Strong interaction between electromagnetic radiation and matter leads to the formation of hybrid light-matter states, making a system’s absorption and emission properties distinctively different from that at the uncoupled states. For instance, strong coupling between cavity photons and quantum emitters results in the emergence of Rabi splitting andnew polaritonic eigenmodes, exhibiting characteristic spectral anticrossing and ultrafast energy exchange. There has recnetly been a rapidly increasing number of studies focusing on strong coupling between photonic nanostructures and two-dimensional materials (2DMs), demonstrating exceptional nanoscale optical properties and applications. Here, we review the recent advances and important developments of strong light-matter interactions in hybrid photonic systems based on 2DMs, including graphene, black phosphorus, and transition-metal dichalcogenides. We adopt the coupled oscillator model to describe the strong coupling phenomena and give an overview of three classes of 2DMs-based nanostructures realizing this regime. Following this, we discuss potential applications that can benefit from strong coupling induced effects and conclude our review with a perspective on the future of this rapidly emerging field.

Funder

Research Funds for the Central Universities

Research and Development Program of China

National Natural Science Foundation of China

Higher Education Discipline Innovation Project

Publisher

IOP Publishing

Subject

Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials

Cited by 32 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3