Abstract
Abstract
Resonant electromagnetic scattering has been optimized for angularly inhomogeneous nanotubes characterized by different surface admittances along the two complementary arcs. The optimal designs are substantially more efficient compared to their best homogeneous counterparts and the spatial distribution of the scattering power reveals the nature of the sustained resonances. In this sense, the reported scattering scores constitute limits for the response of that simple class of structures and can be employed as optimized components in a wide spectrum of photonic devices from wave transformers and field sensors to electromagnetic filters and optical lenses.
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献