Highly porous nanocomposite of NiMoS4 nanosheets and reduced graphene oxide for energy storage application

Author:

Van Hoa Nguyen,Dat Pham Anh,Ngoc Le Tran,Minh Nguyen Cong,Van Tang Nguyen,Thi Nga Dao,Ngoc Tran Quang

Abstract

Abstract This study presents a high porous nanocomposite composed of reduced graphene oxide and NiMoS4 (RGO/NiMoS4) for supercapacitor electrode materials. The different morphologies of NiMoS4 growth on RGO sheets were obtained via a facile one-step microwave-assisted method. The obtained material comprised NiMoS4 nanoneedles of several nanometers in diameter, which are well attached to the surface of RGO nanosheets. The RGO/NiMoS4 nanocomposite had a mesoporous structure, high specific surface area, and high electric conductivity. These excellent characteristics yield a fast electron and ion transport, and a large number of electroactive sites. The RGO/NiMoS4 composite delivered a specific capacitance of 1273 F g−1 at a current density of 1.0 A g−1, high-rate capability of 71.3% retention from 1 to 6.5 A g−1. Besides, an asymmetric supercapacitor device had a capacitance of 80 F g−1 at a current density of 1.0 A g−1 and an energy density of 82.5 Wh kg−1 at a power density of 1000 W kg−1 with an operating voltage of 1.6 V. Thus, the current RGO/NiMoS4 nanocomposite has a great potential for energy storage application.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,General Materials Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3