Abstract
Abstract
The aim of this research was the study of the transition between high and low electrical resistivity states of two overlapped graphene layers when subjected to short electromagnetic pulses (soliton waves). These transitions have already been previously observed by the authors in experiments carried out with different conductors, separated by a tiny insulating layer. The choice of a highly ordered material, such as graphene, was justified by the attempt to achieve greater stability and reproducibility of these transitions. What has been observed is an instantaneous reversible transition of the graphene overlapped layers to/from a state of insulator with resistance in the order of Mohms from/to a state of resistance of few ohms or, in some cases, of zero ohms. The transition from a high resistance state to a lower one requires EM pulses of different polarity than the transition from a low resistivity state to a higher one. Some intermediate relatively stable states have also been observed.
Subject
General Physics and Astronomy