Ripple formation with intense Gaussian femtosecond laser pulses close to the damage threshold

Author:

Teubner UORCID,Andreev A,Makin V,Imgrunt J

Abstract

Abstract The formation of laser-induced periodic surface structures (LIPSS or ripples) is a topic that has been investigated for almost 60 years. More recently with the advent of ultrashort laser pulses this subject has regained interest, in particular, due to interaction regimes that have not been present so far. Consequently a lot of work has been done in that field, especially with comprehensive experimental and theoretical investigations of the scaling of ripple parameters on laser pulse duration, wavelength, applied fluence, shot number and so on. However, there are still a lot of questions. The present work addresses an important issue on that subject. In particular, ripple formation is investigated at high laser intensity, namely at an intensity sufficiently large to generate a femtosecond-laser induced plasma. Thus ripple formation occurs close to damage threshold. Experimental results and theoretical discussion of ripple formation and the interrelation to laser pulse energy deposition, energy transport and sample damage originating from the optical interaction and additional thermal effects, respectively, are discussed. Most important, a reduction of ripple formation threshold with laser intensity and fluence, respectively, has been observed which is associated by a super-linear increase of the ripple area. The scaling of this reduction with laser fluence obtained from theoretical estimates is in good agreement with the experimental data.

Funder

DAAD

Publisher

IOP Publishing

Subject

General Physics and Astronomy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3