Quantum particle in a spherical well confined by a cone

Author:

Halifa Levi RazORCID,Kantor YacovORCID

Abstract

Abstract We consider the quantum problem of a particle in either a spherical box or a finite spherical well confined by a circular cone with an apex angle 2θ 0 emanating from the center of the sphere, with 0 < θ 0 < π. This non-central potential can be solved by an extension of techniques used in spherically-symmetric problems. The angular parts of the eigenstates depend on azimuthal angle φ and polar angle θ as P λ m ( cos θ ) e im φ where P λ m is the associated Legendre function of integer order m and (usually noninteger) degree λ. There is an infinite discrete set of values λ = λ i m (i = 0, 1, 3, ...) that depend on m and θ 0. Each λ i m has an infinite sequence of eigenenergies E n ( λ i m ) , with corresponding radial parts of eigenfunctions. In a spherical box the discrete energy spectrum is determined by the zeros of the spherical Bessel functions. For several θ 0 we demonstrate the validity of Weyl’s continuous estimate W for the exact number of states up to energy E, and evaluate the fluctuations of around W . We examine the behavior of bound states in a well of finite depth U 0, and find the critical value U c (θ 0) when all bound states disappear. The radial part of the zero energy eigenstate outside the well is 1/r λ+1, which is not square-integrable for λ ≤ 1/2. (0 < λ ≤ 1/2) can appear for θ 0 > θ c ≈ 0.726π and has no parallel in spherically-symmetric potentials. Bound states have spatial extent ξ which diverges as a (possibly λ-dependent) power law as U 0 approaches the value where the eigenenergy of that state vanishes.

Funder

Israel Science Foundation

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference47 articles.

1. The factorization method;Infeld;Rev. Mod. Phys.,1951

2. Exactly solvable Schrödinger operators;Dereziński;Ann. Henri Poincaré,2011

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3