Dynamics of a pulsed negative nanosecond discharge on water surface and comparison with the positive discharge

Author:

Hamdan AhmadORCID,Diamond JamesORCID,Herrmann Antoine

Abstract

Abstract The fundamental physics underlying non-thermal plasmas produced by pulsed discharges at atmospheric pressure is of great interest, especially considering the technological and environmental applications of these plasmas. Discharge dynamics is highly dependent on experimental conditions, such as the propagation medium and the voltage polarity. Herein, we investigate pulsed nanosecond discharges produced by a negatively polarized voltage in a medium of air in-contact with water. Electrical and optical characterization of the discharges is achieved using the appropriate probes and ultrafast imaging, respectively. The time-integrated images are acquired under varying conditions of applied voltage, and the discharge emission is shown to be a homogenous disk at voltages between −4 and −15 kV. When the voltage is increased (absolute value) beyond −15 kV, the homogeneous emission is superimposed with filaments. The temporal evolution of the discharge emission (1 ns integration time) shows that it remains homogeneous and has a ring-like ionization front. At higher voltages and during the falling period, the discharge reignites as filaments that significantly elongate and decrease in intensity until extinguishment. A comparison of discharge emissions obtained at positive and negative polarities indicates that the features of both may be controlled by manipulating the space charge formation dynamics.

Funder

Fonds de Recherche du Québec - Nature et Technologies

Canada Foundation for Innovation

Natural Sciences and Engineering Research Council of Canada

Publisher

IOP Publishing

Subject

General Physics and Astronomy

Reference73 articles.

1. The mechanism of growth of spark discharges;Meek;Appl. Sci. Res. Sect. B,1956

2. Development of spark discharges;Saxe;Nature,1948

3. Streamer breakdown and sparking thresholds;Loeb;Phys. Rev.,1951

4. Some aspects of breakdown streamers;Loeb;Phys. Rev.,1954

5. The role of photoionization in positive streamer dynamics;Kulikovsky;J. Phys. D: Appl. Phys.,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3