Precise dot inkjet printing thought multifactorial statistical optimization of the piezoelectric actuator waveform

Author:

Bucciarelli AlessioORCID,Reddy Chandraiahgari Chandrakanth,Adami Andrea,Mulloni VivianaORCID,Lorenzelli Leandro

Abstract

Abstract InkJet printing is a technique that in the last decades has attracted the attention of the scientific community because it allows producing customized patterns with a variety of inks and substrates, making it suitablemethod for the production of flexible circuits. However, the optimization of this technique is still problematic due to a large number of process variables. Among them the modification of the waveform parameters of the piezoelectric actuator that allows the ejections of the ink can be effective in tuning the printing quality. This work reports a study by a statistical method, namely Design of Experiments (DOE), to optimize the inkjet printing parameters for a nanoparticle-based silver (Ag) ink. This method showed the interplay of the waveform parameters into the definition of optimal drop reproducibility and the achievement of the optimal resolution. In particular, it is shown that mixed terms of the model have a statistical significance and therefore the proposed multifactorial approach provides a benefit in the optimization with respect to the more commonly used one-factor-at-a-time models (OFAT). For the first time, empirical equations have been reported within the corresponding 95% confidence intervals. These equations can be used as a tool to directly tune the properties of the printed dot by modifying the waveform parameters. As case study, we proposed the combinations of a commercial Ag nanoparticles ink with Kapton, a commonly used substrate for flexible electronics.

Publisher

IOP Publishing

Subject

Electrical and Electronic Engineering,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3